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Abstract: Self-similar solutions are obtained for unsteady, one-dimensional adiabatic (or isothermal) flow 

behind a strong shock in a perfectly conducting dusty gas in presence of a magnetic field. The shock wave is 

driven out by a piston moving with time according to power law. The initial magnetic field varies as some 

power of distance and the initial density of the medium is constant. The dusty gas is taken as the mixture of a 

perfect gas and small solid particles.  It is assumed that the equilibrium flow condition is maintained in the flow 

field, and that the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained, in 

both cases, when the flow between the shock and the piston is isothermal or adiabatic. Effects of a change in the 

mass concentration of the solid particles in the mixture   , in the ratio of the density of solid particles to the 

initial density of the gas    and in the strength of initial magnetic field are also obtained. It is shown that the 

presence of magnetic field has decaying effect on the shock wave, but this effect is decreased on increasing    

when     . Also, a comparison is made between adiabatic and isothermal cases. 

Keyword: Shock wave, self-similar solution, dusty gas, magnetic field, adiabatic flow and isothermal flow. 

1. INTRODUCTION 

 The study of shock wave in a mixture of small 

solid particles and perfect gas is of great interest in 

several branches of engineering and science (Pai et 

al. [20]). The dust phase constitutes the total 

amount of solid particles which are continuously 

distributed in perfect gas. The volumetric fraction 

of the dust lowers the compressibility of the 

mixture, and the mass of the dust load may increase 

the total mass, and hence it may add to the inertia 

of the mixture. Both effects due to addition of the 

dust, the decrease of the mixture‟s compressibility 

and the increase of the mixture‟s inertia may 

markebly influence the shock wave.                         

Miura and Glass [16] obtained an analytic solution 

for a planar dusty gas flow with constant velocities 

of the shock and piston moving behind it. As they 

neglected the volume occupied by the solid 

particles mixed into the perfect gas, the dust 

virtually has a mass fraction but no volume 

fraction. Their results reflect the influence of the 

additional inertia of the dust upon the shock 

propagation. For plane, cylindrical and spherical 

geometry Vishwakarma [28] computed a non-

similarity solution for the flow field behind a strong 

shock propagating at non-constant velocity in a 

dusty gas. He considered exponential time 

dependence for the velocity of the shock. As he 

considered the nonzero volume fraction of solid 

particles in dusty gas, his results reflect the effect 

of both the decrease of compressibility and the 

increase of the inertia of the medium on the shock 

propagation (Steiner and Hirschler [26], 

Vishwakarma and Pandey [30]).The similarity 

method of Taylor[27] and Sedov [24] well known 

for piston problems have been used by several 

authors, e.g. Finkleman and Baron [6], Gretler and 

Regenfelder [9], Helliwell [11], Wang [34], Singh 

et al. [25], to discuss about the hyperbolic character 

of the governing equations and to obtain solutions 

in an ideal gas. Steiner and Hirschler [26] have 

derived similarity solutions for the flow behind a 

shock wave propagating in a dusty gas. The shock 

wave is driven out by a moving piston with time 

according to power law. 

 At high temperatures that prevail in the problems 

associated with shock waves a gas is ionized and 

electromagnetic effects may also be significant. A 

complete analysis of such a problem should 

therefore consist of the study of gas dynamic flow 

and the electromagnetic field simultaneously. The 
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study of propagation of cylindrical shock waves in 

a conducting gas in the presence of an axial or 

azimuthal magnetic field is relevant to the 

experiments on pinch effect, exploding wires, and 

so on. This problem both in uniform and non-

uniform ideal gas was under taken by many 

investigators such as Pai [18], Sakurai [23], 

Bhutani [2], Cole and Greifinger [4], Deb Ray [5], 

Christer and Helliwell [3], Vishwakarma and 

Yadav [33], Vishwakarma and patel [31]. 

Vishwakarma and Singh [32] have studied the 

propagation of diverging shock waves in a low 

conducting and uniform or non-uniform gas as a 

result of time dependent energy input [31, 14] 

under the influence of a spatially variable axial 

magnetic induction. Vishwakarma et al. [7] have 

extended the work of Vishwakarma and Singh [32] 

to study the propagation of diverging cylindrical 

shock waves in a weakly conducting dusty gas in 

place of a perfect gas. 

The magnetic fields have important roles in a 

variety of astrophysical situations. Complex 

filamentary structure in molecular clouds, shapes 

and the shaping of planetary nebulae, synchrotron 

radiation from supernova remnants, magnetized 

stellar winds, galaxies, and galaxy clusters as well 

as other interesting problems all involve magnetic 

fields (see [17,10,1]).                         

In the present paper, we generalize the solution 

given by Steiner and Hirschler [26] for the 

propagation of a strong shock wave in a conducting 

dusty gas in presence of a magnetic field driven out 

by a piston moving according to a power law. The 

initial magnetic field varies as some power of 

distance and the initial density of the medium is 

constant. In order to get some essential features of 

shock propagation in the presence of a magnetic 

field, the solid particles are considered as a pseudo-

fluid continuously distributed in the perfect gas and 

the mixture as perfectly conducting fluid. It is also 

assumed that the equilibrium flow condition is 

maintained in the flow field, and that the viscous 

stress and heat conduction of the mixture are 

negligible (Pai et al. [20], Higashino and Suzuki 

[12]). In this paper, both the adiabatic and 

isothermal flows between the shock and the piston 

are considered. The assumption of adiabaticity may 

not be valid for the high temperature flow where 

the intense heat transfer takes place such as behind 

a strong shock. Therefore, an alternative 

assumption of zero-temperature gradient 

throughout the flow (isothermal flow) may 

approximately be taken (Korobeinikov [13], 

Laumbach and Probstein [14], Sachdev and Ashraf 

[22]). The effects of variation of mass 

concentration of solid particles (  ), the ratio of 

density of solid particles to the initial density of the 

perfect gas in the mixture (  ) and the parameter 

for strength of initial magnetic field (  
  ) are 

obtained. A comparative study between the 

solutions of isothermal and adiabatic flows is also 

made.                                                                         

                                                                                   

 2. FUNDAMENTAL EQUATIONS AND 

BOUNDARY CONDITIONS: ADIABATIC 

FLOW                         

 The fundamental equations for one- dimensional, 

unsteady and adiabatic flow of a perfectly 

conducting mixture of a gas and small solid 

particles in the presence of an azimuthal magnetic 

field may be written as (c.f. Pai et al. [20], 

Whitham [35]) 
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 where   is the density,   is the flow velocity,   is 

the pressure,   is the azimuthal magnetic field   is 

the internal energy per unit mass,   is the magnetic 

permeability,   and   are the space and the time 

coordinates respectively and       correspond to 

the cylindrical and the spherical symmetries.                        

The equation of state of the mixture of a perfect gas 

and small solid particles can be written as (Pai 

[19]) 
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     ,                                                             

(2.5) 

where    is the gas constant,    the mass 

concentration of the solid particles,   the 

temperature and   the volume fraction of the solid 

particles in the mixture. 

 The relation between    and   is given by  

   
    

 
  ,                                                                 

(2.6) 

where  
  

 is species density of solid particles. 

 In the equilibrium flow,     is a constant in the 

whole flow-field. Therefore  

 

 
  constant .                                                           

(2.7) 

 Also we have the relation 

  
  

(    )    
   ,                                                              

(2.8) 

 where    
   

 
  is the ratio of the density of the 

solid particles to the density of the perfect gas in 

the mixture.                          

The Internal energy per unit mass of the mixture 

may be written as 

  [      (    )  ]      ,              (2.9) 

where     is the specific heat of solid particles,    

the specific heat of the gas at constant volume and 

    the specific heat of the mixture at constant 

volume process.                         

The specific heat of the mixture at constant 

pressure is 

          (    )     ,                        (2.10) 

where    is a specific heat of the gas at constant 

pressure.                         

The ratio of the specific heats of the mixture is 

given by (Pai [19], Marble [15]) 
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(2.12) 

The internal energy per unit mass of the mixture is, 

therefore, given by  

  
 (   )

 (   )
  .                                                                

(2.13) 

The equilibrium speed of sound in the mixture „ ‟ 

is given by 

    
  

 (   )
  .                                                              

(2.14) 

 A strong cylindrical or spherical shock is supposed 

to be propagating in the undisturbed electrically 

conducting mixture of an ideal gas and small solid 

particles with constant density.                         

The azimuthal magnetic field in undisturbed dusty 

gas is assumed to vary as  

  
 

  
  ,                                                                         

(2.15) 

where „ ‟ and „ ‟ are constants. The flow variables 

immediately ahead of the shock front are 

        ,                                                                   

(2.16) 
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(2.17) 
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where    is the shock radius and subscript „0‟ 

denotes the conditions immediately ahead of the 

shock.                         

The laws of conservation of mass, magnetic flux, 

momentum and energy across the shock front 

propagating with velocity    (=
   

  
) into a medium 

(mixture of an ideal gas and small solid particles) 

of constant density  
 
 at rest (    ) and with 

negligibly small counter pressure  
 
   give the 

following shock conditions: 
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(2.24) 

where the subscript „ ‟ denotes conditions 

immediately behind the shock front. 

The shock conditions (2.20-2.23) reduce to 
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where   (     ) is given by the relation 

  (   )    *(  
    )       +  

 *      +  
       

     ,                

(2.26) 

   being the initial volume fraction of the solid 

particles in the mixture and    the Alfven Mach 

number.                         

The expression for the initial volume fraction of the 

solid particles     is given by  

   
  

(    )     
  ,                                             

(2.27)         

where     is the ratio of the density of solid 

particles to the initial density of the perfect gas. 

Also the Alfven Mach number    is given by  

  
  

  
 

   
 

  

                                                                      

(2.28)      

3. SELF-SIMILARITY TRANSFORMATIONS                       

The flow field is bounded by a spherical (or 

cylindrical) piston internally and a spherical (or 

cylindrical) shock externally. In the framework of 

self-similarity (Sedov [7]) the velocity    of the 

piston is assumed to follow a power law given by 

   
   

  
   (

 

  
)
 
  ,                                                

(3.1) 

where     is the time at a reference state,    denotes 

the radius of the piston,    is the piston velocity at 

t=   and n is a constant. The consideration of 

ambient pressure  
 
 and ambient magnetic field    

imposes restriction on „ ‟  . 
 

 
    / (see 

equation (3.6)). Thus the piston velocity jumps, 

almost instantaneously from zero to infinity leading 

to the formation of a shock of high strength in the 

initial phase. Referring the shock boundary 

conditions, self-similarity requires that the velocity 

of the shock   is proportional to the velocity of the 

piston, that is, 
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(3.2) 

where   is a constant. The time and space 

coordinates can be transformed into a 

dimensionless self -similarity variable as follows 
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(3.3) 

Evidently,       
  

  
   at the piston and     at 

the shock.                         

To obtain the similarity solutions, we write the 

unknown variables in the following form (c.f. 

Steiner and Hirschler [4]) 
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where  ,   ,   and   are functions of   only.                        

For existence of similarity solutions     should be 

a constant, therefore  
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 The conservation equations (1.1) – (1.4) can be 

transformed into the following system of ordinary 
differential equations with respect to λ: 
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By solving the above four equations, we get 
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The piston‟s path coincides at   = 
  

  
  with a 

particle path. Using equations (3.1) and (3.4) the 

relation 

 (  )  (   )  ,                                            

(3.15) 

can be derived.                                                                                                                                

Using the self-similarity transformations (3.4) and 

equation (3.2) the shock conditions (2.24) take the 

form                                             
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 Now the differential equations (3.11-3.14) may be 

numerically integrated, with the boundary 

conditions (3.16) to obtain the flow-field between 

the shock front and the piston.                         

4. ISOTHERMAL FLOW                    

In this section, we present the similarity solution 

for the isothermal flow behind a strong shock 
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driven out by a spherical (or cylindrical) piston 

moving according to the power law (3.1), in the 

case of perfectly conducting dusty gas.                                              

The strong shock conditions, which serve as the 

boundary conditions for the problem will be same 

as the shock conditions (2.20-2.23) in the case of 

adiabatic flow.                      

For isothermal flow, equation (2.4) is replaced by 

  

  
                                                                                  

(4.1) 

The equations (2.1), (2.2), and (2.3) can be 

transformed using equation (3.4) into 
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Equation (4.1) together with equation of state (2.5) 

gives 
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Equation (4.6) with the aid of equation (3.4) yields 

a relation between  ( ) and  ( ) in the form 
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Solving equations (4.2)-(4.4) for  
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The transformed shock conditions (3.16) and the 

kinematic condition (3.15) at the piston will be 

same as in the case of adiabatic flow.                         

The ordinary differential equations (4.8-4.11) with 

boundary conditions (3.16) can now be numerically 

integrated to obtain the solution for the isothermal 

flow behind the shock surface. 

Normalizing the variables  ,  ,   and   with their 

respective values at the shock, we obtain 
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(4.12) 

5. RESULTS AND DISCUSSION 

Equations (3.11-3.14) for adiabatic flow and 

equations (4.8-4.10) for isothermal flow with 

boundary conditions (3.16) were integrated using 

fourth-order Runge-kutta algorithm. The flow 

variables  ,  ,   and   as functions of   are 

obtained from the shock front (   ) until the 

inner expanding surface (    ) is reached. For 

the purpose of numerical calculations, the values of 

constant parameters are taken to be (Pai et al. [20] 

Miura and Glass [16], Vishwakarma [28], Steiner 

and Hirschler [26], Rosenau and Frankenthal [21]) 

   ,   
 

 
,        ,        ,         , 

         and   
               . The value 

    corresponds to spherical shock,      to the 

dust-free case (perfect gas) and   
     to a non-

magnetic case. Also,      may be taken as a typical 

value of the ratio of specific heat of dust particles 

and specific heat at constant volume of the perfect 

gas (  ).                         

The variation of the flow variables  
 

  
 ,  

 

  
 ,   

 

  
  and  

 

  
   for adiabatic case are shown in figures (1) to (4) 

and for isothermal case in figures (5) to (8). Table 

(1) shows the values of   and    at various values 
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of    ,    and   
  . The density ratio   remains 

same in both the adiabatic and isothermal cases. 

The ratio of the velocity of the inner surface 

(piston) and the fluid velocity just behind the shock 

is 
  

  
 

 

(   ) 
 

  

(   )
  which is always greater than 

1 from table (1). Figure (2) shows that the reduced 

density 
 

  
 at   

     is rapidly decreased near the 

piston (inner contact surface) in the case of 

adiabatic flow; whereas this effect is removed in 

the case of isothermal flow (figure (6)). 

Figure (9) shows that variation of    with respect to 

   for different value of          
    For     , 

   noticeably decreases by an increase in   . It 

means that the strength of the shock is decreased 

when    is increased. For        ,     increases 

with increase in   . It means that the strength of the 

shock is increased by an increase in     Physically 

it means that when        the density of the 

perfect gas in mixture is highly decreased which 

overcomes the effect of incompressibility of the 

mixture and finally makes a small decrease in the 

distance between the piston and shock front, and an 

increase in the shock strength. Further when 

magnetic field is applied on flow-field, the value of 

   is decreased which means that effect of 

magnetic field is to decrease the shock strength. 

 It is found that an increase in the value of     

i. increases the density ratio across the shock  

  . 
  

  
/  when     , but in case of 

        the density ratio decreases;  

ii. increases the distance of piston from the 

shock front when     ,  and decreases 

it when        (see table 1).                       

iii. increases the reduced fluid velocity 
 

  
 , the 

reduced density 
 

  
  and the reduced 

pressure 
 

  
  at any point in the flow-field 

behind the shock when      and 

decreases these when       ; and                       

iv. decreases the reduced magnetic field 
 

  
 

when      and increases it when 

      . 

This shows that an increase in    decreases the 

shock strength when      and increases it when 

      . Physical interpretations of these effects 

are as follows:                         

In the mixture, small solid particles of density 

equal to that of the perfect gas occupy a significant 

part of the volume which lowers the 

compressibility of the medium at     . Also, the 

compressibility of the mixture is reduced by an 

increase in    which causes an increase in the 

distance between the shock front and the piston, a 

decrease in the shock strength, and the above 

nature of the flow variables. In the mixture at 

      , small solid particles of density equal to 

100 times that of the perfect gas occupy a very 

small portion of the volume, and therefore 

compressibility is not lowered much; the inertia of 

the medium is increased significantly due to dust 

load. An increase in   , from 0.1 to 0.4 in the 

mixture for        , means that the perfect gas 

constituting 90% of the total mass and occupying 

99.889%  of the total volume now constitutes 60% 

of the total mass and occupies 99.338% of the total 

volume. Due to this reason, the density of the 

perfect gas in mixture is highly decreased which 

overcomes the effect of incompressibility of the 

mixture and finally causes a small decrease in the 

distance between piston and shock front, an 

increase in the shock strength, and the above 

behavior of flow variables.                         

Effects of an increase in the value of    are 

i. to decrease the value of   (i.e. to increase 

the shock strength);                         

ii. to decrease the distance of piston from the 

shock front; and                         

iii. to decrease the flow variables 
 

  
, 
 

  
 and 

 

  
  

and to increase 
 

  
  .                        

These effects may be physically interpreted as 

follows:  

Due to increase in    (at constant   ), there is high 

decrease in   , i.e. the volume fraction of solid 

particles in the mixture becomes comparatively 

very small. This effect induces comparatively more 
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compression of the mixture in the region between 

shock and piston, which displays the above effect. 

 An increase in the value of the parameter for 

strength of the magnetic field    
                         

i. decreases   , i.e. increases the distance of 

the piston from the shock front. 

Physically it means that the gas behind 

the shock front is less compressed and the 

strength of the shock is decreased(see 

table 1);                         

ii.  increases the value of   (i.e. decreases 

the shock strength), which is same as 

given in (i)above (see table 1); 

iii. decreases the flow variables 
 

  
  and 

 

  
  at 

any point in the flow-field behind the 

shock front (see figures 1 and 4 (for 

adiabatic flow) and 5 and 8 (for 

isothermal flow)); and 

iv.  increases the flow variable  
 

  
   and  

 

  
  

(see figures 2 and 3 (for adiabatic flow) 

and 6 and 7 (for isothermal flow)). 

Also, table1 shows that the effect of magnetic field 

on shock strength, in both the cases (adiabatic and 

isothermal flows), decreases significantly on 

increasing the mass concentration of solid particles 

   at     ;  whereas at        the effect of 

magnetic field on the shock strength is almost not 

influenced by increasing   .Thus the presence of 

magnetic field has decaying effect on the shock 

wave, but this effect is decreased on increasing    

when     . 

6. COMPARISON BETWEEN ADIABATIC 

AND ISOTHERMAL FLOWS 

i. In isothermal flow at   
     (non-

magnetic case) the density is almost 

constant in the flow-field behind the 

shock; whereas at   
         and      

(magnetic cases) the density decreases 

very rapidly near the piston (see figure 6). 

But in adiabatic flow in both the magnetic 

and non-magnetic cases (  
   

            ) the density decreases very 

rapidly near the piston (see figure 2). 

ii. From table1 it is clear that    (position of 

the piston surface) in isothermal flow is 

greater than that in the adiabatic flow. 

Physically, it means that the gas is more 

compressed in the isothermal flow in 

comparison to that in adiabatic flow. Thus 

the strength of the shock is higher in the 

isothermal flow than that in the adiabatic 

flow.  

  

7. CONCLUSION                  

In this work, we have studied the self-similar 

solution for the flow behind a strong shock wave 

propagating in a perfectly conducting dusty gas in 

the presence of an azimuthal magnetic field. The 

shock is driven by a piston moving with velocity 

obeying a power law. On the basis of this work, 

one may draw the following conclusions:                         

i. An increase in the mass concentration of solid 

particles (  ) decreases the shock strength at 

lower values of   , and increases it at its 

higher values. Also for     , it increases the  

reduced velocity, reduced density and reduced 

pressure and decreases the reduced magnetic 

field at any point in the flow-field behind 

shock; whereas for       , it decreases the 

reduced velocity, reduced density and reduced 

pressure and increases the reduced magnetic 

field.  

ii. An increase in the value of the ratio of the 

density of solid particles and the initial density 

of the perfect gas in the mixture (  ) increases 

the shock strength and decreases the distance 

of piston from the shock front. Also, it 

decreases the reduced velocity, the reduced 

density and the reduced pressure and increases 

the reduced magnetic field at any point in the 

flow field behind the shock. These effects are 

more impressive at higher values of    ( 

   ). 

iii. The presence of magnetic field decreases the 

reduced fluid velocity but increases the 

reduced pressure and reduced density at any 

point in the flow-field behind the shock.  Also, 

the effect of magnetic field on shock strength, 

in both the cases (adiabatic and isothermal 

flow), decreases significantly by increasing    
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at     ;  whereas at         the effect of 

magnetic field on the shock strength is almost 

not influenced by increasing   . 

iv. The value of    (piston position) in isothermal 

flow is greater than that in the adiabatic flow 

i.e. the strength of the shock is higher in the 

isothermal flow than that in the adiabatic flow. 
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